Pivoting in Extended Rings for Computing Approximate Gröbner Bases
نویسندگان
چکیده
It is well known that in the computation of Gröbner bases arbitrarily small perturbations in the coefficients of polynomials may lead to a completely different staircase, even if the solutions of the polynomial system change continuously. This phenomenon is called artificial discontinuity in Kondratyev’s Ph.D. thesis. We show how such phenomenon may be detected and even “repaired” by using a new variable to rename the leading term each time we detect a “problem”. We call such strategy the TSV (Term Substitutions with Variables) strategy. For a zero-dimensional polynomial ideal, any monomial basis (containing 1) of the quotient ring can be found with the TSV strategy. Hence we can use TSV strategy to relax term order while keeping the framework of Gröbner basis method so that we can use existing efficient algorithms (for instance the F5 algorithm) to compute an approximate Gröbner basis. Our main algorithms, named TSVn and TSVh, can be used to repair artificial ε-discontinuities. Experiments show that these algorithms are effective for some nontrivial problems. Mathematics Subject Classification (2000). Primary I.1.2; Secondary F.2.1.
منابع مشابه
Reduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
We define reduced Gröbner bases in polynomial rings over a polynomial ring and introduce an algorithm for computing them. There exist some algorithms for computing Gröbner bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced Gröbner bases by these algorithms. In this paper we propose a new notion of reduced Gröbner bases in polynomial rings over a polynomial r...
متن کاملPolynomial GCD and Factorization via Approximate Gröbner Bases
We discuss computation of approximate Gröbner bases at high but finite precision. We show how this can be used to deduce exact results for various applications. Examples include implicitizing surfaces, finding multivariate polynomial greatest common divisors and factorizations over the rational and complex number fields. This is an extended version of a paper for SYNASC 2010: Proceedings of the...
متن کاملOn Computing Gröbner Bases in Rings of Differential Operators with Coefficients in a Ring
Following the definition of Gröbner bases in rings of differential operators given by Insa and Pauer(1998), we discuss some computational properties of Gröbner bases arising when the coefficient set is a ring. First we give examples to show that the generalization of S-polynomials is necessary for computation of Gröbner bases. Then we prove that under certain conditions the G-S-polynomials can ...
متن کاملExact Computat ion Using Approximate Gröbner Bases
We discuss computation of approximate Gröbner bases at high but finite precision. We show how this can be used to deduce exact results for various applications. Examples include implicitizing surfaces, finding multivariate polynomial greatest common divisors and factorizations over the rational and complex number fields. This is an extended version of a paper for SYNASC 2010, titled úPolynomial...
متن کاملReduced Gröbner bases and Macaulay-Buchberger Basis Theorem over Noetherian rings
In this paper, we extend the characterization of Z[x]/〈f〉, where f ∈ Z[x] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Gröbner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. A[x1, . . . , xn]/a, wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics in Computer Science
دوره 5 شماره
صفحات -
تاریخ انتشار 2011